
Dev-C++ - Our
 C++ Compiler

KoolB – Our
own Compiler
Temp – Holds

all sorts of stuff

Compiler Folder

Setting Up Our C++ Compiler:

Welcome back! In this section we will be meeting mean old Mr. C++, setting up
his home, and starting to program our compiler. With that in mind, we first need to
choose a C++ compiler. Just as with BASIC, numerous C++ compilers exist. Choosing
one isn’t too difficult however because we can eliminate most because of either a hefty
price tag (Microsoft Visual C++, for example), or because of a lack of a good user
interface (I never liked typing in stuff at a command prompt). I finally settled on Dev-
C++, a freeware compiler with a nice IDE (not RAD, though). Thankfully, we won’t
have to wait forever for it to download, as it size is only 7.5 MB; however, if your
connection is slow or your ISP disconnects you often, you might want to use a
download manager to pause and resume your downloads (FreshDownload is a good
one without any ads, see http://www.freshdevices.com for more details). For our
purposes, Dev-C++ 4.0 will work (5.0 is still beta and buggy). By now you are probably
thinking, “Would he just hurry up and tell me where I can download it from?!?” Ok, ok,
here are some download links:

http://prdownloads.sourceforge.net/dev-cpp/devcpp4.zip
http://www.simtel.net/pub/pd/17456.html
ftp://62.137.135.95/devcpp4.zip

If you find that these links don’t work, try searching for devcpp4.zip on Google

or Simtel.net.
While Dev-C++ downloads, lets create a home for our compiler project. First, we

need a location for the project. I will put mine under C:\Compiler, and I strongly
suggest you do as well. So create a folder under the C drive and name it ‘Compiler.’
Next, create three folders under the ‘Compiler’ directory: ‘Dev-
C++’ (for the C++ compiler), ‘Temp’ (for temporary stuff),
and…hey wait a minute. We haven’t named our compiler yet!
Lets do so now. Hmm, how about ‘RBA’ for Really Bad
Acronym? No? Well, how about ‘Kool-Bee?’ OK, for lack of a
better name (you can tell that naming things is one of my better
strengths, right?), we’ll just name our compiler Kool-Bee or
KoolB for short. So, back on track, create another folder in
‘Compiler’ and name it ‘KoolB.’ Has Dev-C++ downloaded yet?
Not quite yet? Well then, take a water break (coffee isn’t that
good for you) while the download finishes or look at the
diagram to the right, which shows visually where everything goes.

Now that Dev-C++ has downloaded, unzip it with WinZip or, my favorite, 7-zip
(see http://www.7-zip.com) into the ‘C:\Compiler\Temp’ folder and run ‘Setup.exe’
(if your zipping software offers to automatically install it, go right ahead). Dev-C++

Chapter 2 – Meet Mr. C++

now presents you with the Setup Screen. Now begins the fun part: the installation. Hit
the ‘Yes’ button to accept the license (having fun reading it?). The next screen gives you
the option of a Typical, Compact, or Custom installation. If you have the room (about 25
MB) use the default Typical installation. We are now almost done; however, we need to
change the destination directory, so click the ‘Browse’ button and select
‘C:\Compiler\Dev-C++’ folder (alternatively, just type it in). Click ‘Next’ and then kick
back and relax while Dev-C++ installs itself.

Creating the Compiler Project:

After extracting the files and creating the icons, the installation process give you
the opportunity to run the program, so check the option ‘Yes, Launch the program file’
and click ‘Finish.’ The installation process exits and Dev-C++ launches for the first time.
It gives you some options, I would suggest that you just click ‘OK.’

Finally, the main screen appears and leaves you there staring at it. Not very

pretty, but it gets the job done. OK, enough staring at it; let’s do something! How about
we create a new project for our compiler? To do that, go File -> New Project. Dev-C++
displays a bunch of options, so lets logically think this through. We just want a compiler
that translates BASIC to assembly language, so we don’t need a fancy Windows
interface; of course, later on we will need a nice IDE, but not now. That leaves the choice
‘Console Application,’ which will do, so click on the ‘Console Application’ option and
make sure the ‘C++ project’ option is selected as you see below:

Click ‘OK’ and type in ‘KoolB’ when it

asks you for a project name. When it asks you
where you want to save it, navigate to
‘C:\Compiler\KoolB’ and click ‘Save.’ Presto,
you have just created KoolB project! You
should now have a screen that looks like this
(disregard the C++ for now):

Introducing Mr. C++:

First, lets make sure that everything works. Save everything by going, File ->
Save All; Dev-C++ prompts you to save the ‘Untitled1’ file, so type in Main, since it is

#include <stdio.h>

the main module of our compiler. Hit ‘Save.’ Before we meet Mr. C++, lets do a trial
compile; to do so, go Execute -> Rebuild All. A dialog box pops up and informs you
that Dev-C++ is busy compiling the C++ code; when it is finished compiling, it gives
you the compilation results (as seen to the right). Here you see the Project name, the
total number of errors, and the size of output file
(in another words, the size of the program). The
very first thing you want to look at is the ‘Total
Errors.’ That tells us how many mistakes we have
made. Right now it should be 0 since we haven’t
done anything. Later we will have to deal with
errors. Take a look at the size: 4096 bytes. That is 4
KB! That is one of the reasons C++ makes a good
choice for a compiler, it compiles into compact
and fast programs. Once you have finished
looking at the dialog box, click ‘Continue.’

Now the part you have been (hopefully)
steeling yourself for: meeting Mr. C++. My
approach in introducing you to Mr. C++ will be to show you how Mr. C++ wants you
to program, explaining it to you, and then comparing it to Mrs. Rapid-Q. Ever heard the
expression ‘Mother knows best?’ Well, it is true. Mrs. Rapid-Q has it all together and is
just one bundle of fun. Mr. C++, on the other hand, can be moody, grumpy, and overall
unpleasant. His motto is “My way or the high way.” Nice guy, huh? Why do we want
to use him, then? He has a lot more speed than Rapid-Q. Also, he requires less space
and is more structured. This makes him a good choice for a compiler. My aim is to show
you that once you understand how Mr. C++ relates to Mrs. Rapid-Q, you should be able
to mentally translate between the two. After a while, you won’t even need to translate it
in your mind, you just will understand it.

First, (take a deep breath…it might be worse than meeting your in-laws!) let me
introduce Mr. C++ (as generated in the Dev-C++ window):

Whew! Before you throw in the towel and say “This is too much for me. I’ll stick

to Mrs. Rapid-Q (which, by the way, isn’t a half bad idea),” let me show you how Mr.
C++’s methods compares to Mrs. Rapid-Q’s line by line:

#include <stdio.h>

int main(int argc, char *argv[])
{

 return 0;
}

int main(int argc, char *argv[])

{

 return 0;

This includes the file “stdio.h”, which allows us to communicate with the outside

world by printing to and from the console. Mr. C++’s #include statement is basically the
same as Mrs. Rapid-Q’s $Include except you use ‘<’ and ‘>’ instead of quotes. Using
Mrs. Rapid-Q, we would say:

The next line of C++ says:

Unlike Mrs. Rapid-Q’s system where the program’s code can be placed

anywhere, Mr. C++ says, “Thou shalt put all code in a special function called main.”
When the C++ program is run, this is the function that runs, so everything in it is the
program and when this function exits, the program exits as well. The parameter argc
refers to the number of parameters on the command line; Mrs. Rapid-Q’s equivalent is
the internal variable CommandCount. The other parameter is argv, which contains the
actual command line parameters, just like Mrs. Rapid-Q’s Command$() function. So
overall, Mrs. Rapid-Q’s equivalent of this would be:

The next line of C++ is rather simple:

Here is another place where Mr. C++ is just plain weird. As my Algebra
professor used to say, “Computers aren’t intelligent.” Well, in this situation, Mr. C++ is
even less intelligent than Mrs. Rapid-Q: it doesn’t even know where the function
begins! So you have to tell it by placing a { in front of the beginning of the function.
Right now, the only thing in this function is:

Notice the semi-colon at the end of the line? That’s on of Mr. C++’s worst
personality traits. He makes you, as in forces you, put a semi-colon at the end of each
statement. Of all the contorted tortures he puts us C++ programmers through, that is
the worst. To make it even worse, some statements in Mr. C++ vocabulary don’t need a

$Include “Rapidq.inc”

Function main (CommandCount As Integer, Command As String) As Integer

}

#include <stdio.h>

int main(int argc, char *argv[])
{

 return 0;
}

semi-colon such as functions, if’s, etc, but in general, Mr. C++ makes you put a semi-
colon after each line. In Mr. C++’s vocabulary, return has a special meaning. With Mrs.
Rapid-Q, you would always put the return value of a function in the variable Result (or
the function name). Mr. C++ isn’t always as swift in the brain as Mrs. Rapid-Q, you
have tell him specificially what value you want to return by saying ‘return’ and then
the value you want to return. Mrs. Rapid-Q would only have you do this:

The final line is:

As I mentioned earlier, Mr. C++ isn’t as bright as Mrs. Rapid-Q. Mr. C++ doesn’t
know when to end a function, so you have to tell it by using ‘}’. The Rapid-Q
equivalent would be:

Now lets look a the two versions,

both Mr. C++’s and Mrs. Rapid-Q’s, side by side:

OK, let’s list our complaints against Mr. C++:

1. To include a file (or module), we must write #include <filename>, where
the filename is the name of the file to include.

2. All code must be in the main function.

Result = 0

End Function

$Include “RapidQ.inc”

Function main (CommandCount As Integer,_
 Command As String) _
 As Integer

 Result = 0 ‘or Main = 0
End Function

printf(“Welcome to the KoolB Compiler programmed by Brian C. Becker.\r\n”);

void Start(void);
void Compile(void);
void Stop(void);

3. To return a value from a function, we must use the statement return and
then the value to return. (For the main function, this value is typically
zero.)

4. Returning from the main function means the program has finished and
that the program has nothing more to do.

5. The function body needs a stop and a finish, to start a function use {, to
stop a function, use }.

6. Most statements need a semi-colon at the end, it is similar to pressing
ENTER in Mrs. Rapid-Q.

Programming the Main Module:

Now that you understand all the intimate personality traits of Mr. C++…lets do
some programming. Well, OK, maybe you don’t still don’t know Mr. C++ that well, but
lets do some hand-on exercises to help cement what you just learned. If you get lost,
don’t worry, I will put the entire code at the end of this section. Swap back to the Dev-
C++ window (If you closed it, just go File -> Open and navigate to KoolB.dev) and type
the following line in between the { and before the return 0; statements:

Before I explain what this does, replace “Brian C. Becker” with your own name

(after all, you are the one doing all the hard work!). Now let me explain what this does.
Mr. C++ likes to confuse us by renaming Mrs. Rapid-Q’s print statement to printf; he
also makes us use parentheses and a semi-colon at the end. The \r\n at the end means
to print a newline. Here is Mrs. Rapid-Q’s form (much easier if I do say so):

To compile that, go Execute -> Rebuild All. Hopefully you won’t get any errors,
if you do, check to make sure that all your quotes are there and you have a semi-colon
at the end. Once it compiles successfully, click ‘Continue.’ We will run it in just a couple
of minutes, but first lets add some more stuff. I am a big fanatic of lots of functions and
objects, so let’s add some functions right before the main function but below the
#include statement:

Now I know you are thinking “I thought he said he was going to add some
functions. Those don’t look like functions!” But yes, these are Mr. C++ style functions.

print “Welcome to the KoolB Compiler by Brian C. Becker.”

DataType FunctionName (Parameters);

void Start(void){

}

void Compile(void){

}

void Stop(void){

}

His way of declaring functions is radically different from Mrs. Rapid-Q’s. Mr. C++’s
general form to declare a function is:

Let’s compare that with Mrs. Rapid-Q’s way of declaring a function:

In this example, DataType is the type of data that the function returns,

FunctionName is the name of the Function, and the Parameters are of course the
parameters. When we want to skip something, we cannot just leave it blank as Mrs.
Rapid-Q allows us to do, mean Mr. C++ makes us use a special word: void. Void just
means nothing. “Hey then,” I hear you say, “if void means nothing, that means that the
functions Start, Compile, and Stop return nothing, which makes them subroutines, not
functions!” Well, doggone it, you are so totally right, but try telling that to Mr. C++; he
just doesn’t understand. To his warped mind, everything is a function. So let me restate
these quote functions the correct way in Mrs. Rapid-Q’s style:

Nothing too hard about that, is there?
Now that we have declared these functions, lets fill them out. Usually we like to

do that at the bottom of the file, so move to the last line below the main function and
copy & paste this:

So here we have the three functions with space

to put the code inside. Mrs. Rapid-Q way is:

Declare Function FunctionName (Parameters) As DataType

Declare Sub Start
Declare Sub Compile
Declare Sub Stop

DWORD StartTime;

Dim StartTime As Long

As you can see, Mrs. Rapid-Q doesn’t need to be told that
there are not any parameters (with the void keyword) while Mrs.
C++ does, Mrs. Rapid-Q doesn’t need to be told where the sub
begins, while Mr. C++ does, and Mr. Rapid-Q doesn’t need to be
told that there aren’t any return values, while Mr. C++ does. I am
not sure about you, but this leads me to the conclusion that Mr.
C++ is sort of stupid! Technically, in today’s world you aren’t
supposed to call anybody stupid; the ‘politically correct’ term is
‘slow learner.’ Whatever: the fact still remains, C++ is dim-witted.

Now let’s flesh out these ‘functions.’ I was thinking that it
would be nice to perhaps show the time that it took to compile a program, sort of like
Rapid-Q. We could do this by checking the time in the Start function and then
subtracting that from the time in the Stop function. How about it? Sound good to you?
OK, lets plan out what we need:

1. We need a global variable to keep track of the starting time.
2. We need a way of getting the time.
3. We need a way of displaying the time.

With that in mind, lets will start. First, we need a global variable to keep track of

the time. Sounds simple enough, we will just name it ‘StartTime.’ Unfortunately, we
again encounter another one of Mr. C++’s quirks. He wants us to declare the variable
differently from how we normally do it with Mrs. Rapid-Q. Ah, well, I guess we will
just have to humor him. Since this is a global variable, lets put it at the top of the
program right after the functions:

A bit strange, huh? Mr. C++ wants us to first tell him what data type it is and
then what the name of the data is. Here, we want a DWORD type of data; don’t worry;
DWORD is just another name for a positive integer. Mrs. Rapid-Q would have us do it
like this:

Secondly, we need a way of getting the time. To do so, we need the Windows
API. The Windows API is a set of functions enclosed in Dynamic Link Libraries that are
provided by Microsoft to help Windows programmers program using Windows newest
features. The Windows API can be even stranger than Mr. C++, so we will go slowly
when we dig further into it; however, for now, we just need a function to get the current
time. Digging through the API time functions, I noticed one that might work:
GetTickCount. It gets the number of milliseconds (1/1000 of a second) since the
computer was turned on. That should work, but hey, wait a second, if GetTickCount is

Sub Start

End Sub

Sub Compile

End Sub

Sub Stop

End Sub

#include <windows.h>

void Start(void){
 StartTime = GetTickCount();
 return;
}

void Compile(void){

 return;
}

void Stop(void){
 printf(“Compile Time:\t%f”, (GetTickCount()-StartTime)/1000.0);
 return;
}

a Windows function, don’t we need to somehow import it from the DLL? With Mrs.
Rapid-Q, we would do this:

Now please don’t faint or anything, but for once, Mr. C++’s way is easier. Yes,
you heard me; Windows API functions are actually easier in C++! Do I hear a hearty
‘Hurrah’ back there? Do you know why Dev-C++ is so much larger than Rapid-Q? That
is because Dev-C++ contains 10 MB worth of other peoples work! Somebody else has
already done the hard stuff for you, all you have to do is include his or her work (which
happens to be named, what else, windows.h). So without further delay, put the
following line at the very top of the file:

That allows us to use most of the Windows API functions, including

GetTickCount. Thirdly, we needed a way to print the time; that’s easy, we will just use
the printf function that we used earlier. Here are the functions all fleshed out :

The function Start gets the time when the program started, then Compile will do

its hard work (we’ll get to that in a later chapter), and then Stop will figure out how
long the compile process took. If you look carefully, you will notice that the printf
function has a different number of parameters. And look! What is that weird symbol %f
doing right after the Compile Time? Mr. C++ has made the printf function very useful
to us, to embed a number into a string and then display it, we just type %f were we

Declare Function GetTickCount Lib "kernel32.dll" alias "GetTickCount"_
() As Long

Start();
Compile();
Stop();

want to put the number and then add the number at the end of the parameters. Mrs.
Rapid-Q’s style would be:

There’s only one last thing we have to do. Have you noticed it? KoolB doesn’t

call the functions Start, Compile, and Stop from its main function! We need to correct
that, so right after the first printf statement and before the return 0; in the main function
insert:

Here is the entire code with some comments on the side:

Sub Start
 StartTime = GetTickCount()
End Sub

Sub Compile

End Sub

Sub Stop
 Print “Compile Time:\t”; (GetTickCount()-StartTime)/1000.0
End Sub

Click Execute -> Rebuild All to compile it and there you have it – the start of

KoolB, our BASIC compiler. Granted it is pretty limited, but hey, we will get there
eventually. For those of you who need to see how Mrs. Rapid-Q would do it, here it is:

#include <windows.h>
#include <stdio.h>

void Start(void);
void Compile(void);
void Stop(void);

DWORD StartTime;

int main(int argc, char *argv[])
{
 printf("Welcome to the KoolB Compiler by Brian C. Becker.\r\n");
 Start();
 Compile();
 Stop();
 return 0;
}

void Start(void){
 StartTime = GetTickCount();
 return;
}

void Compile(void){

 return;
}

void Stop(void){
 printf("Compile Time:\t%f", (GetTickCount()-StartTime)/1000.0);
 return;
}

Include everything for printing to the
console and to use the Windows API.

Declare our functions.

Need a number to keep track of the time.

Here’s were our program begins.

Print out some info Do some start-up stuff

Finish up.
End the program

Get the current time.

Print out the compile time.

Calculate the total
time it took to
compile the project.

We will be coming back
to this function in later
chapters.

If you compare these two programs together, you will see some startling

differences. Obviously, Mrs. Rapid-Q is a lot easier than Mr. C++. However, look at the
file sizes: Mrs. Rapid-Q is 163 KB and Mr. C++ is 5 KB. Wow! That is a really large
difference, and to top that, all Mrs. Rapid-Q’s programs are compressed, meaning there
is an even bigger difference. In this example, there is no speed comparison since the
example doesn’t do much of anything that can be timed (i.e. no heavy work), but if
there was, Mrs. Rapid-Q would lose. For example, just looping a million times takes
.857 seconds with Mrs. Rapid-Q and only .005 seconds with Mr. C++, which means that
Mr. C++ is over 150 times faster in this circumstance! But simplicity does have its

$Include "Rapidq.inc"

Declare Function GetTickCount Lib "kernel32.dll" alias "GetTickCount"_
 () As Long

Declare Sub Start
Declare Sub Compile
Declare Sub Stop
Declare Function main (CommandCount As Integer, Command As String) _
 As Integer

Dim StartTime As Long

CALL main(CommandCount, Command$(1))

Function main (CommandCount As Integer, Command As String) As Integer
 print "Welcome to the KoolB Compiler by Brian C. Becker."
 Start
 Compile
 Stop
 Result = 0 'or Main = 0
End Function

Sub Start
 StartTime = GetTickCount()
End Sub

Sub Compile

End Sub

Sub Stop
 $EscapeChars ON ‘to translate \t to a tab
 Print "Compile Time:\t"; (GetTickCount()-StartTime)/1000.0
End Sub

advantages for new programmers and experienced programmers who just want a
simple program.

Testing Our Work:

Since we haven’t done much except play around with Mr. C++, there isn’t that
much to test, but how about we at least run it to see how it works? To do so, click on the
Start Button and the navigate to Programs. We are looking for a program named ‘MS-
DOS Prompt’ or ‘Command Prompt.’ Microsoft has a habit of re-organizing things, so
you might find it under the sub-folder ‘Accessories.’ Anyhow, if you cannot find it, let
me know along with your version of Windows and I will try to help you. Open it up
and you get something that looks entirely too much like DOS (Urr, I don’t like DOS).
Type in ‘cd c:\Compiler\KoolB’ and hit ENTER. That changes the current directory to
our compiler’s folder. Now type in ‘KoolB’ and press ENTER.’ You should get
something like this:

Gee, that was a fast compile! I wish other compilers did it that fast. Type ‘Exit’ to

exit the console and then save all the work by going File -> Save All in Dev-C++. Then
exit (File -> Exit).

Conclusion:

Well, that concludes Chapter 2 – Meet Mr. C++ (by the way, I didn’t mean half
the derogatory things I said about C++; I really do like the language, although I wish it
was easier to learn). You should now have an idea of what C++ is and how it works. I
would suggest for those that might still be sort of sketchy on C++ that you check out
some of these tutorials:

1. http://www.rit.edu/~jpw9607/ctut/: This tutorial requires some
programming skills from any other language, especially BASIC or Pascal,

since this will only explain working with the language C/C++, not
programming in general.

2. http://www.intap.net/~drw/cpp/index.htm: The purpose of this tutorial is
to give a good understanding of the programming language C++ to any
person that wants it.

3. http://www.cprogramming.com/tutorial.html: This tutorial is for everyone;
if you've never programmed before, or if you have extensive experience
programming in other languages and want to expand into C++. It is for
everyone who wants the feeling of accomplishment from a working program.

 We also started to create our compiler, KoolB and added the some small features
to it like the credits and timing. In the next chapter, we will be adding some modules to
our compiler to handle different tasks like reading the BASIC input file. We won’t be
writing the whole modules; we will just start to build the framework for KoolB.

